Hēlijs
- Šis raksts ir par ķīmisko elementu. Par sengrieķu dievu skatīt rakstu Hēlijs (mitoloģija).
Hēlijs (grieķu: ἥλιος (helios) — 'Saule'; apzīmē ar He) ir ķīmiski visinertākais elements, kas tikpat kā neveido ķīmiskus savienojumus. Šī cēlgāze nav indīga, kā arī ir bez krāsas, smaržas un garšas. Hēlijs ir periodiskās tabulas otrais elements. No visiem elementiem hēlijam ir viszemākā kušanas un viršanas temperatūra. Līdz ar to, hēlijs vienmēr, izņemot ekstrēmus apstākļus, ir nedegoša un grūti sašķidrināma vienatoma gāze.
Hēlijs | |||||||
---|---|---|---|---|---|---|---|
| |||||||
Hēlija atoma shematiska uzbūve un ar hēliju pildītas lampas | |||||||
Oksidēšanas pakāpes | 0 | ||||||
Elektronegativitāte | 3,89[nepieciešama atsauce] | ||||||
Blīvums | 0,179 kg/m3 | ||||||
Kušanas temperatūra | 0,95 K (-272,2 °C)(pie 2,5MPa) | ||||||
Viršanas temperatūra | 4,22 K (-268.93 °C) |
Hēlijs ir otra vieglākā un arī otra izplatītākā viela visā Visumā (abās pirmajās vietās ir ūdeņradis). Tiek uzskatīts, ka lielākā daļa hēlija izveidojās Lielajā sprādzienā, bet pārējais hēlijs ir izveidojies zvaigznēs notiekošajās ūdeņraža kodolreakcijās. Uz Zemes hēlija ir salīdzinoši mazāk, un tas galvenokārt ir veidojies smago elementu dabiskajā radioaktīvajā sabrukšanā.
Vēsture
labot šo sadaļuHēliju 1868. gadā Indijā atklāja franču astronoms Pjērs Žansāns (Pierre Janssen) pilna Saules aptumsuma laikā. Veicot Saules hromosfēras spektroskopiskos pētījumus, viņš Saules spektrā konstatēja spožu dzeltenu līniju, kas nebija saistāma ne ar vienu tolaik zināmo elementu. Vienlaicīgi šādu atklājumu izdarīja britu astronoms Normans Lokjers. Vēlāk tādu pašu līniju atklāja arī uz Zemes — vulkānisko gāzu un dažu radioaktīvo izotopu izdalīto gāzu spektros. 1903. gadā ASV tika atrasti milzīgi hēlija krājumi vienā no dabiskajiem gāzes laukiem. Tomēr hēlijs ir ķīmiskais elements, kas vispirms atklāts ārpus Zemes un nosaukts par godu Saulei (grieķu: hēlios - saule).
Atrašanās dabā
labot šo sadaļuPēc izplatības Visumā hēlijs ir otrajā vietā aiz ūdeņraža, taču uz Zemes hēlijs ir visai rets, jo savus sākotnējos hēlija krājumus Zeme zaudējusi drīz pēc izveidošanās - tās gravitācijas spēks ir par vāju, lai noturētu vieglos hēlija atomus. 1 kubikmetrā gaisa atrodas tikai 5,24 kubikcentimetri hēlija.[1] Hēlijs veidojas Zemes dzīlēs urāna, torija un citu radioaktīvo elementu alfa sabrukšanas ceļā un virspusē nonāk kopā ar dabasgāzi, kura var saturēt līdz pat 7% hēlija (pēc tilpuma). Parasti dabasgāze satur 0,1 līdz 0,5% hēlija.
Izotopi
labot šo sadaļuGandrīz viss dabiskais hēlijs sastāv no izotopa 4He ar masas skaitli 4. Nesalīdzināmi retāks (tikai 0,00014%) ir otrs hēlija stabilais izotops 3He jeb hēlijs-3. Hēlija-3 saturs dažādās dabiskās atradnēs var mainīties visai plašās robežās. Mākslīgi iegūti vēl seši radioaktīvi hēlija izotopi.
Bioloģiskā nozīme
labot šo sadaļuHēlijam nav nekādas bioloģiskas nozīmes, taču tā bioloģiskais inertums un niecīgā šķīdība asinīs ir noderīgi pielietošanai ūdenslīdēju un akvalangistu elpošanas maisījumos (ar hēliju aizstāj slāpekli, kas var izraisīt kesona slimību). Izmantojot hēlija maisījumus ar skābekli, cilvēks var ienirt lielākā dziļumā, taču pie hēlija parciālā spiediena 1,3 - 1,6 MPa var rasties ķermeņa un ekstremitāšu trīcēšana, tā saucamais hēlija tremors.[1]
Hēliju dažreiz izmanto kā iesaiņošanas gāzi pārtikas iepakojumu piepildīšanai (pārtikas piedeva E939).[2]
Iegūšana
labot šo sadaļuHēliju rūpnieciski iegūst no dabasgāzes ar dziļās sasaldēšanas metodi - hēlijs paliek gāzveida stāvoklī, kad visas pārējās dabasgāzes sastāvdaļas ir sašķidrinātas. 66% no pasaulē iegūstamā hēlija tiek iegūti ASV, apmēram 400 km rādiusā ap Amarilo pilsētu Teksasā.[3]
Fiziskās īpašības
labot šo sadaļuHēlija atoma elektronu apvalka struktūra ir sevišķi stabila, ar ko tas atšķiras no visiem pārējiem ķīmiskajiem elementiem. Tas izskaidrojams ar to, ka hēlija valences elektronu čaula (1s2) ir pabeigta un tā jonizācijas enerģija ir vislielākā (24,58 eV), jo šī ir kodolam vistuvākā no visām elektronu čaulām. Savukārt polarizējamība hēlija atomam ir vismazākā, tādēļ to savstarpējā iedarbība ir ļoti vāja un spēj izpausties tikai ļoti zemā temperatūrā vai ļoti augstā spiedienā.
Hēlija fiziskās īpašības visvairāk līdzinās molekulārā ūdeņraža īpašībām. Hēlijam piemīt viszemākā kušanas temperatūra no visām pazīstamajām vielām. Atmosfēras spiedienā tas nepāriet cietā fāzē pat absolūtās nulles tuvumā - ciets hēlijs iegūstams tikai vairāk nekā 25 atmosfēru spiedienā. Tam, tāpat kā cietam ūdeņradim, ir heksagonāls kristālrežģis. Hēlija šķīdība ūdenī un citos šķīdinātājos ir jūtami zemāka nekā citām gāzēm. Litrā ūdens 0 °C temperatūrā izšķīst tikai 10 ml hēlija, kas ir vairāk nekā divas reizes mazāk nekā ūdeņraža šķīdība. Ūdenī spēj izšķīst 51 000 reizes vairāk HCl nekā hēlija.
Hēliju pirmo reizi sašķidrināja Heike Kamerlings-Onness 1908. gadā. Cietu hēliju izdevās iegūt Villemam Kēzomam 1926. gadā. Kēzoms arī atklāja šķidrā hēlija-4 fāzu pāreju 2,17 K temperatūrā (virs šīs temperatūras eksistējošo šķidro fāzi sauc par hēliju-I, bet zemākā temperatūrā eksistē hēlijs-II). 1938. gadā Pjotrs Kapica atklāja, ka hēlijam-II nepiemīt viskozitāte. Šī neparastā parādība tika nosaukta par supraplūstamību (supratekamību) un to iespējams izskaidrot tikai ar kvantu fizikas metodēm. Supraplūstoši šķidrumi pieder pie tā saucamajiem kvantu šķidrumiem - tajos kvantu efekti izpaužas makroskopiskā līmenī.
Ķīmiskās īpašības
labot šo sadaļuHēlijs ķīmiskos savienojumus veido tikai visai ekstremālos apstākļos, parastā temperatūrā un spiedienā hēlija savienojumi ir ļoti nestabili. Piemēram, elektriskās izlādes procesā var rasties jonizētas divatomu molekulas He2+, kurām ir divas saistošās un viena irdinošā molekulārā orbitāle — (σssaist)2(σsird)1. Tādēļ šāds molekulārais jons ir stabils, kamēr vien nepiesaista trūkstošo elektronu, kas normālos apstākļos notiek momentāni — tad hēlija molekula uzreiz sadalās divos neitrālos atomos.[4] Tāpat iespējams arī molekulārais jons — savienojums ar ūdeņradi HeH+.
Izmantošana
labot šo sadaļuHēliju tā inertuma dēļ izmanto aizsargatmosfēras radīšanai kausējot, griežot vai metinot aktīvus metālus, kā arī silīcija kristālu audzēšanā. Hēlija atmosfērā elektriskais loks rada sevišķi augstu temperatūru, kas palielina metināšanas ātrumu. Hēliju lieto kā nesējgāzi gāzu hromatogrāfijā.
Tā kā hēlijs ir ļoti viegla un nedegoša gāze, to plaši izmanto aerostatu, gaisa balonu un dirižabļu uzpildīšanai.
Šķidru hēliju lieto tehnikā metālu supravadītspējas radīšanai (piemēram, supravadošos elektromagnētos) un zinātniskās laboratorijās par aukstuma pārnesēju dažādos zemas temperatūras fizikas eksperimentos, kā arī kodolreaktoru dzesēšanai.
Hēlijam-3 ir lielas perspektīvas nākotnes enerģētikā kā kodoltermiskajai degvielai.
Skatīt arī
labot šo sadaļuAtsauces
labot šo sadaļuVikikrātuvē par šo tēmu ir pieejami multivides faili. Skatīt: Hēlijs |
- ↑ 1,0 1,1 Вредные химические вещества. Неорганические соединения элементов V-VIII групп. Справочник. Л., "Химия", 1989 (krieviski)
- ↑ Bils Stetems. Zini, ko tu pērc! Rīga, Zvaigzne ABC, 2007 ISBN 978-9984-40-470-7
- ↑ Популярная механика, 2010, №3, 15. lpp (krieviski)
- ↑ N.Ahmetovs. Neorganiskā ķīmija, Rīga, "Zvaigzne", 1978
Ārējās saites
labot šo sadaļu- Vikikrātuvē par šo tēmu ir pieejami multivides faili. Skatīt: Hēlijs.
- Encyclopædia Britannica raksts (angliski)
- Brockhaus Enzyklopädie raksts (vāciski)
- Krievijas Lielās enciklopēdijas raksts (krieviski)
- Encyclopædia Universalis raksts (franciski)
- Enciklopēdijas Krugosvet raksts (krieviski)
H | He | ||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | As | Br | Kr | ||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Te | I | Xe | |||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Rn | ||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
Sārmu metāli | Sārmzemju metāli | Lantanīdi | Aktinīdi | Pārejas metāli | Citi metāli | Pusmetāli | Citi nemetāli | Halogēni | Cēlgāzes |