Nabla
Nabla jeb Hamiltona operators ir diferenciāls operators, ko lieto vektoru analīzē. To var pierakstīt kā formālu vektoru:
kur apzīmē parciālo atvasinājumu pēc mainīgā x.
Pielietojums
labot šo sadaļuOperatoru nabla var izmantot, lai kompakti pierakstītu sarežģītas vektoru analīzes izteiksmes, kā arī atvieglotu darbības ar tām. Ar tā palīdzību var definēt citus svarīgus vektoru analīzes jēdzienus, piemēram, gradients, diverģence, rotors, atvasinājums norādītajā virzienā un Laplasa operators jeb Laplasiāns. Šos jēdzienus plaši izmanto matemātiskajā fizikā, hidrodinamikā[1] un kvantu mehānikā.
Gradients
labot šo sadaļuSkalāra lauka ƒ(x,y,z) gradientu var pierakstīt kā vektora un skalārās funkcijas ƒ formālu reizinājumu:
Diverģence
labot šo sadaļuJa ir vektoru lauks, kura komponentes apraksta skalāras funkcijas , un , tad šī lauka diverģenci var pierakstīt kā vektoru un formālu skalāro reizinājumu:
Rotors
labot šo sadaļuVektoru lauka rotoru var pierakstīt kā vektoru un formālu vektoriālo reizinājumu:
Atvasinājums norādītajā virzienā
labot šo sadaļuSkalāra lauka ƒ(x,y,z) atvasinājumu vektora virzienā aprēķina pēc formulas[2]
Ar operatora nabla palīdzību šo izteiksmi var pierakstīt divos ļoti līdzīgos veidos:
Pirmajā gadījumā vispirms tiek aprēķināts vektoru un formāls skalārais reizinājums un tad ar iegūto operatoru iedarbojas uz funkciju ƒ, formāli sareizinot abus objektus kā skalārus lielumus. Otrajā gadījumā aprēķina vektora formālu skalāro reizinājumu ar vektoru .
Laplasiāns
labot šo sadaļuLaplasa operators ir skalārs operators, ko, līdzīgi operatoram nabla, var pielietot gan skalāriem, gan vektoru laukiem. To var definēt kā operatora nabla formālu skalāro reizinājumu pašam ar sevi:
Saīsināti šo sakarību mēdz pierakstīt arī šādi:
Atšķirības no parasta vektora
labot šo sadaļuLielākoties ar operatoru nabla var darboties kā ar parastu vektoru, taču dažos gadījumos ir jābūt uzmanīgam.[3] Piemēram, ja ir vektoru lauks, tad tā skalārais reizinājums ar operatoru nabla nav komutatīvs:
jo pirmā izteiksme ir vienāda ar lauka diverģenci, taču otra izteiksme ir vienāda ar operatoru
kas aprēķina lineāru kombināciju no atvasinājumiem.
Skatīt arī
labot šo sadaļuAtsauces
labot šo sadaļu- ↑ Andrejs Cēbers, Teorētiskā hidrodinamika.
- ↑ Vitolds Gedroics, Atvasinājums norādītajā virzienā. Gradients Arhivēts 2007. gada 10. decembrī, Wayback Machine vietnē., lekciju materiāli, Daugavpils Universitāte.
- ↑ Tai, Chen-To (1994), A survey of the improper use of ∇ in vector analysis.
Papildu literatūra
labot šo sadaļu- Schey, Harry Moritz (2005), Div, grad, curl, and all that: an informal text on vector calculus (4 izd.), W.W. Norton, ISBN 978-0-39-392516-6.
Ārējās saites
labot šo sadaļu- Eric W. Weisstein, Nabla, MathWorld.
- Nabla Arhivēts 2010. gada 20. jūnijā, Wayback Machine vietnē., PlanetMath.