Taisne
Taisne ir viens no ģeometrijas pamatelementiem. Taisnes definīcija ir atkarīga no konkrētās ģeometrijas aksiomām. Ja ģeometrijas uzbūves pamatā ir attālums starp diviem telpas punktiem, tad taisne ir līnija, kuras garums ir vienāds ar attālumu starp šiem punktiem.
Taisne algebrā
labot šo sadaļuAlgebrā taisne ir pirmās pakāpes līnija. Dekarta koordinātu sistēmā to nosaka pirmās pakāpes jeb lineārs vienādojums y = ax + b. Šāda taisne nevar būt paralēla y asij.
Taisnes pamatīpašības
labot šo sadaļuTaisnes pamatīpašības ir šādas:
Taisnes vispārīgais vienādojums
labot šo sadaļuTaisnes vispārīgais vienādojums plaknē ir ax + by + c = 0, kur a un b vienlaicīgi nevar būt 0. Taisnei ir perpendikulārs vektors n=(a; b), tā saucamais normālvektors.
Kolineāri punkti
labot šo sadaļuTrīs punktus sauc par kolineāriem, ja tie atrodas uz vienas taisnes. Parasti trīs punkti viennozīmīgi nosaka plakni, bet trīs kolineāru punktu gadījumā tas nenotiek.
Taisne caur diviem punktiem
labot šo sadaļuVienādojums taisnei, kas iet caur diviem dažādiem plaknes punktiem un , var tikt pierakstīts kā
- .
Ja x0 ≠ x1, tad šo vienādojumu var pierakstīt šādi:
vai
Skatīt arī
labot šo sadaļuAtsauces
labot šo sadaļu- ↑ Inese Lude, Jolanta Lapiņa. Matemātika 7. klasei. Pētergailis, 2013. 25. lpp.
Šis ar matemātiku saistītais raksts ir nepilnīgs. Jūs varat dot savu ieguldījumu Vikipēdijā, papildinot to. |