Atvērt galveno izvēlni

Kvadrātvienādojums

Kvadrātvienādojums ir otrās pakāpes vienādojums, kura vispārīgais veids ir

kur ir nezināmais un ≠ 0. Izteiksmi sauc par kvadrāttrinomu. No algebras pamatteorēmas seko, ka kvadrātvienādojumam ir tieši divas saknes (šīs saknes var būt vienādas).

Kvadrātvienādojuma saknesLabot

Kvadrātvienādojuma   saknes   un   var aprēķināt pēc formulas

 

jeb (izvērstā veidā)

 

Lietot var arī -  

Kvadrātvienādojuma diskriminantsLabot

Lielumu

 

sauc par kvadrātvienādojuma   diskriminantu. Šis skaitlis nosaka kvadrātvienādojuma sakņu veidu:

  • ja  , tad kvadrātvienādojumam ir divas dažādas reālas saknes;
  • ja  , tad kvadrātvienādojumam ir divkārša sakne, kuru aprēķina pēc formulas  ;
  • ja  , tad kvadrātvienādojumam ir divas kompleksi saistītas saknes.

Kvadrāttrinoma sadalīšana reizinātājosLabot

Ja ir zināmas kvadrātvienādojuma   saknes   un  , tad attiecīgo kvadrāttrinomu   var sadalīt reizinātājos:

 

Vjeta teorēmaLabot

Ja   un   ir kvadrātvienādojuma   saknes, tad to summa ir vienāda ar koeficientu  , kurš ņemts ar pretēju zīmi, bet sakņu reizinājums ir vienāds ar  :

 

Vispārīgā gadījumā, ja kvadrātvienādojums ir formā  , kur   ≠ 0, un   un   ir tā saknes, tad

 

Šo apgalvojumu sauc par Vjeta teorēmu, jo to pirmais pierādīja franču matemātiķis Fransuā Vjets.

Skatīt arīLabot

Ārējās saitesLabot