Gadījuma lielums ir skaitliska vērtība, kuru piešķir katram gadījuma notikumam. Varbūtību teorijas uzdevums ir noteikt gadījuma lieluma iespējamās vērtības un to varbūtības vēl nenotikušiem izmēģinājumiem, izmantojot jau notikušu mēģinājumu rezultātus. Gadījuma lielumu apzīmē ar tā vērtību vai vispārīgāk ar X.

Gadījuma lielums varētu būt, piemēram, vidējā veselā temperatūra nākamajai dienai. Ar Ω apzīmē matemātisku telpu ar visām temperatūrām. Katra atsevišķa temperatūra ir gadījuma notikums ar savu varbūtību.
Notikumu grupa sastāv no visiem notikumiem- katram notikumam tiek piešķirts vienāds vai kopīgs gadījuma lielums un gadījuma varbūtība.Piemērs- monēta, kurai atšķirīgi gadījuma lielumi {-1; +1}, bet vienādā varbūtība 1/2.
Ja gadījuma lielums X ir diskrēts, tad varbūtību sadalījuma funkcija F(x) izmainās lēcienveidā.
Ja gadījuma lielums ir nepārtraukts, to summēšana nav iespējama un aizstāj integrēšana. Nepārtrauktajā situācijā varbūtību sadalījuma funkcija F(x) ir monotoni augšupejoša līkne (zilā krāsa)

Diskrētais gadījuma lielums

labot šo sadaļu

Diskrētajā gadījumā notikumu skaits ir galīgs vai bezgalīgs un katra gadījuma varbūtība nav nulle.[1] Katram gadījuma lielumam ir sava varbūtība- šo saistību var pierakstīt tabulā:

X x1 x2 ... xn
P p1 p2 ... pn

Visu gadījumu lielumi (x1, x2, ..., xn) satur arī visus iznākumus — to varbūtību summa ir 1:

 

Metot metamo kauliņu, gadījumu lielumu un varbūtību sadalījums izskatās kā tabulā:

X 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6

Visu varbūtību summa ir 1.

Binomiālais sadalījums

labot šo sadaļu

Ja diskrētā gadījuma lieluma vērtību varbūtības nosaka pēc Bernulli formulas, tad iegūst binomiālo sadalījumu. Bernulli formula:

 , kur

  — varbūtība labvēlīgam iznākumam notikt   reizes no visām   reizēm;   — kombinācijas, kā izvēlēties   elementus no  ;   — labvēlīgā varbūtība celta veiksmīgo reižu pakāpē;   — nelabvēlīgā varbūtība ( ) celta neveiksmīgo reižu pakāpē.

Varbūtība, ka kādam cilvēkam garšo mango, ir 0,85. Apēsti 4 mango. Noteikt garšīgo mango (0; 1; 2; 3; 4) varbūtību sadalījumu.

   
0  
1  
2  
3  
4  

Visu varbūtību summa ir viens:  

Nepārtrauktais gadījuma lielums

labot šo sadaļu

Nepārtraukts gadījuma lielums var būt jebkura vērtība kādā intervālā. Tā kā iespējamo gadījuma lieluma vērtību skaits ir nesaskaitāmi liels, tādēļ jebkuras konkrētas vērtības varbūtība ir nulle. Tādēļ nozīme ir aprēķināt varbūtību tikai kādā intervālā (x1; x2). Par nepārtraukta gadījuma lielumiem var uzskatīt visus mērījumus un to kļūdas.[2]