Matricu reizināšana ir bināra operācija, kurā tiek reizināts matricu pāris, šīs operācijas rezultātā tiek iegūta jauna matrica. Skaitļi (piemēram, reāli, kompleksi skaitļi) var tikt reizināti kā elementārajā aritmētikā.

Pastāv vairāki veidi, kā reizināt matricas, no kuriem vienkāršākais ir reizināšana ar skaitli. Matricu reizināšana nav komutatīva, kas nozīmē, ka A · BB · A. Ja tiek reizināta matrica A (n × m matrica) un B (m × p matrica), tad reizināšanas rezultāts AB ir n × p matrica.

Reizināšana

labot šo sadaļu

Reizināšana ar skaitli

labot šo sadaļu

Vienkāršākā reizināšana ar matricām ir matricas reizināšana ar skaitli.

Skaitļa λ reizinājums ar matricu A ir matrica λA, kuras izmērs ir tāds pats, kā matricai A. Matricas λA locekļus definē kā

 

kas izvērstā pierakstā izskatās šādi:

 

Līdzīgi tiek definēts matricas A reizinājums ar skaitli λ

 

kas izvērstā pierakstā izskatās šādi:

 

Piemērs ar reālu skaitli un matricu:

 
 

Divu matricu reizināšana

labot šo sadaļu
 

Ja A ir n × m matrica un B ir m × p matrica,

 

tad matricu reizinājums AB (kas tiek apzīmēts bez kaut kādām reizinājuma zīmēm vai punktiem) ir n × p matrica[1][2][3][4]

 

kur katrs i, j loceklis ir iegūts, reizinot Aik elementu ar Bkj elementu, kur k = 1, 2, ..., m un tiek saskaitīti rezultāti līdz k:

 

Tas nozīmē, ka reizinājums AB ir definēts, ja kolonnu skaits A matricā sakrīt ar rindu skaitu B matricā. Reizinājuma rezultāta matricā rindu skaits ir vienāds ar A rindu skaitu, savukārt kolonnu skaits — ar B kolonnu skaitu.

 
 

Vērtības krustpunktos ir iegūstamas ar šādām darbībām:

 

Matricu reizināšanas piemēri

labot šo sadaļu
Rindas matrica un kolonnas matrica

Ja

 

tad matricu reizināšanas rezultāts ir:

 

un

 

Jāievēro, ka AB un BA ir divas dažādas matricas. Pirmā ir 1 × 1 matrica, bet otrā — 3 × 3 matrica.

Kvadrātiska matrica un kolonnas matrica

Ja

 

tad matricu reizināšanas rezultāts ir:

 

savukārt BA nav definēts.

Kvadrātiskas matricas

Ja

 

tad matricu reizināšanas rezultāts ir:

 

un

 
Rindas matrica, kvadrātiska matrica un kolonnas matrica

Ja

 

tad matricu reizināšanas rezultāts ir:

 

CBA nav definēts. Jāievēro, ka A(BC) = (AB)C, kas ir viena no matricu reizināšanas īpašībām.

Taisnstūrveida matricas

Ja

 

tad matricu reizināšanas rezultāts ir:

 

un

 

Komutativitāte

labot šo sadaļu

Piemērs, kas parāda, ka matricu reizināšana nav komutatīva.

 

 

  1. S. Lipcshutz, M. Lipson. Linear Algebra. Schaum's Outlines (4th izd.). McGraw Hill (USA), 2009. 30–31. lpp. ISBN 978-0-07-154352-1.
  2. K.F. Riley, M.P. Hobson, S.J. Bence. Mathematical methods for physics and engineering. Cambridge University Press, 2010. ISBN 978-0-521-86153-3.
  3. R. A. Adams. Calculus, A Complete Course (3rd izd.). Addison Wesley, 1995. 627. lpp. ISBN 0 201 82823 5.
  4. Horn, Johnson. Matrix Analysis (2nd izd.). Cambridge University Press, 2013. 6. lpp. ISBN 978 0 521 54823 6.

Ārējās saites

labot šo sadaļu