Regulārs Ikosaedrs
Japets/Smilšu kaste
(Spied šeit, lai aplūkotu rotējošu modeli)
Tips Platona daudzskaldnis
Elementi F = 20, E = 30
V = 12 (χ = 2)
Skaldņu skaits pēc malām 20{3}
Šlēfli simbols {3,5} and s{3,3}
Vithofa simbols 5 | 2 3
| 3 3 2
Koksetera-Dinkina diagramma

Simetrijas Ih un Td
vai (*532) un (332)
Atsauces U22, C25, W4
Īpašības Regulārs izliekts deltahedron
Divplakņu leņķis 138.189685°
Japets/Smilšu kaste
3.3.3.3.3
(Virsotnes figūra)

Dodekaedrs
(duālais daudzskaldnis)
Japets/Smilšu kaste
Izklājums

Ģeometrija, ar ikosaedru (Veidne:Lang-el, no eikosi divdesmit + hedron vietas; /ˌaɪ.kəʊ.sə.ˈhi.dɹən/; plural: -drons, -dra /-dɹə/) ir jebkurš daudzskaldnis ar 20 skaldnēm, bet parasti ar to saprot tieši regulāru ikosaedru, kuram skaldnes ir regulāri trīsstūri.

Regulārs ikosaedrs ir viens no pieciem Platona daudzskaldņiem. Tas ir izliekts, regulārs daudzskaldnis, kuram ir divdesmit trīsstūrveida skaldnes, kuras pa piecām satiekas katrā virsotnē. Tam ir 30 šķautnes un 12 virsotnes. Tā duālais daudzskaldnis ir dodekaedrs.

Ja regulāra ikosaedra malas garums ir  , tad apvilktās sfēras (tās, kura pieskaras visām ikosaedra virsotnēm) rādiuss ir

 

un ievilktās sfēras (pieskarās katrai ikosaedra skaldnei) rādiuss ir

 

, un viduslīniju sfēras rādiuss, kura pieskaras katras šķautnes viduspunktam, ir

 

, kur   (tiek apzīmēts arī ar  ) ir zelta šķēlums.

Laukums un tipums

labot šo sadaļu

Regulāra ikosaedra ar šķautnes garumu a virsmas laukums A un tilpums V ir:

 
 .

Dekarta koordinātas

labot šo sadaļu

 
Sekojošās Dekarta koordinātas uzrāda ikosaedra ar šķautnes garumu 2 virsotnes attiecībā pret centru:

(0, ±1, ±φ)
(±1, ±φ, 0)
(±φ, 0, ±1)

kur φ = (1+√5)/2 ir zelta šķēlums (tiek apzīmēts arī ar τ). Note that these vertices form five sets of three mutually centered, mutually orthogonal golden rectangles.

Regulāra oktaedra 12 šķautnes var sadalīt ar zelta šķēlumu tā, ka rezultātā iegūtās virsotnes veido regulāru ikosaedru. This is done by first placing vectors along the octahedron's edges such that each face is bounded by a cycle, then similarly partitioning each edge into the golden mean along the direction of its vector. The five octahedra defining any given icosahedron form a regular polyhedral compound, as do the two icosahedra that can be defined in this way from any given octahedron.

Construction by a system of equiangular lines

labot šo sadaļu

The following construction of the icoshaedron avoids tedious computations in the number field   necessary in more elementary approaches.

Existence of the icosahedron amounts to the existence of six equiangular lines in  . Indeed, intersecting such a system of equiangular lines with an Euclidean sphere centered at their common intersection yields the twelve vertices of a regular icosahedron as can easily be checked. Conversely, supposing the existence of a regular icosahedron, lines defined by its six pairs of opposite vertices form an equiangular system.

In order to construct such an equiangular system, we start with the matrix

 

of square size  . (Mnemonic: the matrix   encodes the angles, acute for a positive entry, obtuse otherwise, between five cyclically consecutive vertices   adjacent to a first vertex   of an icosahedron centered at the origin.)

A straightforward computation yields  . This implies that   has eigenvalues   and  , both with multiplicity   since   is symmetric and of trace zero. The matrix   induces thus an Euclidean structure on the quotient space   which is isomorphic to   since the kernel   of   has dimension  . The image under the projection   of the six coordinate axes   in   forms thus a system of six equiangular lines in   intersecting pairwise at a common acute angle of  . Orthogonal projection of   onto the  -eigenspace of   yields thus the twelve vertices of the icosahedron.

A second straightforward construction of the icosahedron uses representation theory of the alternating group   acting by direct isometries on the icosahedron.


According to specific rules defined in the book The fifty nine icosahedra, 59 stellations were identified for the regular icosahedron. The first form is the icosahedron itself. One is a regular Kepler-Poinsot solid. Three are regular compound polyhedra. [1]

21 of 59 stellations
 
The faces of the icosahedron extended outwards as planes intersect, defining regions in space as shown by this stellation diagram of the intersections in a single plane.
               
             
         

Geometric relations

labot šo sadaļu
 
Icosahedron as a snub tetrahedron.
     
 
Icosahedron as an alternated truncated octahedron.
     

There are distortions of the icosahedron that, while no longer regular, are nevertheless vertex-uniform. These are invariant under the same rotations as the tetrahedron, and are somewhat analogous to the snub cube and snub dodecahedron, including some forms which are chiral and some with Th-symmetry, i.e. have different planes of symmetry from the tetrahedron. The icosahedron has a large number of stellations, including one of the Kepler-Poinsot polyhedra and some of the regular compounds, which could be discussed here.

The icosahedron is unique among the Platonic solids in possessing a dihedral angle not less than 120°. Its dihedral angle is approximately 138.19°. Thus, just as hexagons have angles not less than 120° and cannot be used as the faces of a convex regular polyhedron because such a construction would not meet the requirement that at least three faces meet at a vertex and leave a positive defect for folding in three dimensions, icosahedra cannot be used as the cells of a convex regular polychoron because, similarly, at least three cells must meet at an edge and leave a positive defect for folding in four dimensions (in general for a convex polytope in n dimensions, at least three facets must meet at a peak and leave a positive defect for folding in n-space). However, when combined with suitable cells having smaller dihedral angles, icosahedra can be used as cells in semi-regular polychora (for example the snub 24-cell), just as hexagons can be used as faces in semi-regular polyhedra (for example the truncated icosahedron). Finally, non-convex polytopes do not carry the same strict requirements as convex polytopes, and icosahedra are indeed the cells of the icosahedral 120-cell, one of the ten non-convex regular polychora.

An icosahedron can also be called a gyroelongated pentagonal bipyramid. It can be decomposed into a gyroelongated pentagonal pyramid and a pentagonal pyramid or into a pentagonal antiprism and two equal pentagonal pyramids.

The icosahedron can also be called a snub tetrahedron, as snubification of a regular tetrahedron gives a regular icosahedron. Alternatively, using the nomenclature for snub polyhedra that refers to a snub cube as a snub cuboctahedron (cuboctahedron = rectified cube) and a snub dodecahedron as a snub icosidodecahedron (icosidodecahedron = rectified dodecahedron), one may call the icosahedron the snub octahedron (octahedron = rectified tetrahedron).

A rectified icosahedron forms an icosidodecahedron.

Icosahedron vs dodecahedron

labot šo sadaļu

When an icosahedron is inscribed in a sphere, it occupies less of the sphere's volume (60.54%) than a dodecahedron inscribed in the same sphere (66.49%).

Also, as these are duals, it is possible to transform one into the other(See below).

 
Icosahedron
 
Truncated icosahedron
 
Icosidodecahedron
 
Truncated dodecahedron
 
Dodecahedron

Uses and natural forms

labot šo sadaļu

Many viruses, e.g. herpes virus, have the shape of an icosahedron. Viral structures are built of repeated identical protein subunits and the icosahedron is the easiest shape to assemble using these subunits. A regular polyhedron is used because it can be built from a single basic unit protein used over and over again; this saves space in the viral genome.

In 1904, Ernst Haeckel described a number of species of Radiolaria, including Circogonia icosahedra, whose skeleton is shaped like a regular icosahedron. A copy of Haeckel's illustration for this radiolarian appears in the article on regular polyhedra.

 
Twenty-sided die.

In some roleplaying games, the twenty-sided die (for short, d20) is used in determining success or failure of an action. This die is in the form of a regular icosahedron. It may be numbered from "0" to "9" twice (in which form it usually serves as a ten-sided die, or d10), but most modern versions are labeled from "1" to "20". See d20 System.

An icosahedron is the three-dimensional game board for Icosagame, formerly known as the Ico Crystal Game.

An icosahedron is used in the board game Scattergories to choose a letter of the alphabet. Six little-used letters, such as X, Q, and Z, are omitted.

Inside a Magic 8-Ball, various answers to yes-no questions are printed on a regular icosahedron.

The icosahedron displayed in a functional form is seen in the Sol de la Flor light shade. The rosette formed by the overlapping pieces show a resemblance to the Frangipani flower.

If each edge of an icosahedron is replaced by a one ohm resistor, the resistance between opposite vertices is 0.5 ohms, and that between adjacent vertices 11/30 ohms.[2]

The symmetry group of the icosahedron is isomorphic to the alternating group on five letters. This nonabelian simple group is the only nontrivial normal subgroup of the symmetric group on five letters. Since the Galois group of the general quintic equation is isomorphic to the symmetric group on five letters, and the fact that the icosahedral group is simple and nonabelian means that quintic equations need not have a solution in radicals. The proof of the Abel-Ruffini theorem uses this simple fact, and Felix Klein wrote a book that made use of the theory of icosahedral symmetries to derive an analytical solution to the general quintic equation.

Veidne:Wiktionarypar

Veidne:Wikisource1911Enc

  1. Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999), The fifty-nine icosahedra (3rd izd.), Tarquin, ISBN 978-1-899618-32-3, MR676126 (1st Edn University of Toronto (1938))
  2. Klein, Douglas J. (2002). "Resistance-Distance Sum Rules" (PDF). Croatica Chemica Acta 75 (2): 633–649. Atjaunināts: 2006-09-15.
labot šo sadaļu

Veidne:Polyhedra