Dalībnieks:Elina.nesterenkova/Smilšu kaste

Nevienādība ir apgalvojums, kurā tiek saildzināta divu lielumu savstarpējā vērtība.

Par lineāro nevienādību sauc nevienādību, kas uzrakstāma formā ax + b > 0, kur a un b doti skaitļi, bet x nezināmais.

Skaitļu intervāls
labot šo sadaļu

Par skaitļu intervālu sauc visus skaitļus, kam patiesa dota nevienādība un ko pieraksta sausinātā veida.

Patiesa un aplama nevienādība

labot šo sadaļu

- Nevienādība ir patiesa, jo 3 pieder intervālam.

- Nevienādība ir aplama , jo 3 nepieder intervālam.

Stingras nevienādības

labot šo sadaļu

Ja nevienādības pierakstā izmanto zīmes > vai < (lasa: lielāks vai mazāks), nevienādību sauc par stingru nevienādību.

  •  , nozīmē "a ir lielāks nekā b";
  •  , nozīmē "a ir mazāks nekā b".

Zīmējumā atliek skaitlisko vērtību, ievērojot, ka stingrām nevienādībām zīmē tukšu punktu ໐ un liek apaļas iekavas.

Nestingras nevienādības

labot šo sadaļu

Ja nevienādības pierakstā izmanto zīmes ≤ vai ≥ (mazāks vai vienāds; lielāks vai vienāds), nevienādību sauc par nestingru nevienādību.

  •  , nozīme "a ir vienāds vai lielāks nekā b";
  •  , nozīme "a ir vienāds vai mazāks nekā b".

Zīmējumā atliek skaitlisko vērtību, ievērojot, ka nestingrām nevienādībām zīmē pilnu punktu un liek kvadrātiekavas.

Skaitļu intervālu piemēri

labot šo sadaļu
Nevienādības a-skaitļa attēlojums uz skaitļu ass Skaitļu intervāla pieraksts
 
 
x ir lielāks nekā a
 
 
 
y ir mazāks nekā a
 
 
 
x ir vienāds vai lielāks nekā a
 
 
 
x ir vienāds vai mazāks nekā y
 
 
 
y ir jebkurš skaitlis
 

Skaitlisku nevienādību īpašības

labot šo sadaļu
Īpašība Piemērs
1)Ja patiesas nevienādības abām pusēm pieskaita

vai atņem vienu un to pašu skaitli,

tad iegūst patiesu nevienādību.

 

 

 

 

2) Ja patiesas nevienādības abas puses reizina

vai dala ar vienu un to pašu pozitīvu skaitli,

tad iegūst patiesu nevienādību.

 

 

 

 

3) Ja patiesas nevienādības abas puses reizina

vai dala ar vienu un to pašu negatīvu skaitli,

nevienādības veidu maina uz pretējo.

 

 

maina no   uz  

 

ja zīmi nemainīt, tad apgalvojums būtu aplams

Nevienādību īpašības

labot šo sadaļu

Divas nevienādības ir ekvivalentas, ja tām ir vienādas atrisinājumu kopas.

Īpašība Piemērs Zīmējums
1) Ja nosacītās nevienādības abām pusēm pieskaita vai atņem

vienu un to pašu skaitli,

tad iegūst dotajai nevienādībai ekvivalentu nevienādību

 

 

 

 

 
x ir lielāks nekā deviņi
2) Ja nosacītās nevienādības abas puses reizina vai dala

ar vienu un to pašu pozitīvu skaitli,

tad iegūst dotajai nevienādībai ekvivalentu nevienādību

 

 

 

 

 
x ir lielāks nekā pieci
3) Ja nosacītās nevienādības abas puses reizina vai dala ar

vienu un to pašu negatīvu skaitli un nevienādības zīmi maina uz pretējo,

tad iegūst dotajai nevienādībai ekvivalentu nevienādību.

 

 

maina zīmi no   uz  

 

 
x ir vienāds vai lielāks nekā 4

Lineāru nevienādību atrisināšana

labot šo sadaļu

Atrisināt nevienādību  

Vienādojam saucējus, par kopsaucēju izvēloties 40.

 

 

 

 

 

 

 
x ir vienāds vai mazāks nekā 21

 




Atrisināt nevienādību