Teilora rinda matemātikā ir funkcijai , kam punktā a eksistē visu kārtu atvasinājumi , piekārtota rinda , kuras parciālsummas ir polinomi . Šo rindu 1715. gadā publicējis angļu matemātiķis Bruks Teilors (Brook Taylor ).
Pieaugot atvasināto polinomu skaitam, Teilora rinda tuvojas oriģinālajai funkcijai. Attēlā redzams, kā var aptuvenot sin(x) funkciju, izmantojot 1., 3.., 5., 7., 9., 11., 13. pakāpes polinomus, kad x = 0
Teilora rinda, kas izvirzīta ap punktu
x
=
0
{\displaystyle x=0}
tuvojas eksponenfunkcijas grafikam
Teilora rindu pieraksta šādi:
∑
n
=
0
∞
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
=
f
(
a
)
+
f
′
(
a
)
1
!
(
x
−
a
)
+
f
″
(
a
)
2
!
(
x
−
a
)
2
+
f
(
3
)
(
a
)
3
!
(
x
−
a
)
3
+
⋯
,
{\displaystyle \sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}\,(x-a)^{n}=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+{\frac {f^{(3)}(a)}{3!}}(x-a)^{3}+\cdots ,}
kur
n
!
{\displaystyle n!}
ir n faktoriāls un
f
(
n
)
(
a
)
{\displaystyle f^{(n)}(a)}
ir funkcijas
f
{\displaystyle f}
n -tās kārtas atvasinājums punktā a .
Gadījumā, ja a = 0 , tad šo rindu sauc par Maklorena rindu (nosaukta skotu matemātiķa Kolina Maklorena (Colin Maclaurin ) vārdā).
Pieņemsim, ka eksistē pakāpju rinda
∑
n
=
0
∞
a
n
x
n
{\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}}
, kas intervālā
x
∈
(
−
R
,
R
)
{\displaystyle x\in (-R,R)}
konverģē uz funkciju
f
(
x
)
{\displaystyle f(x)}
. Tad iespējams pierādīt, ka šīs rindas koeficienti ir
a
n
=
f
(
n
)
(
0
)
n
!
(
n
=
0
,
1
,
2
,
.
.
.
)
{\displaystyle a_{n}={\frac {f^{(n)}(0)}{n!}}(n=0,1,2,...)}
.
Izrakstot rindu:
f
(
x
)
=
∑
n
=
0
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
a
3
x
3
+
.
.
.
+
a
n
x
n
+
.
.
.
{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+...+a_{n}x^{n}+...}
, ievietojot
x
=
0
{\displaystyle x=0}
iegūst
f
(
0
)
=
a
0
{\displaystyle f(0)=a_{0}}
f
′
(
x
)
=
a
1
+
2
a
2
x
+
3
a
3
x
2
+
.
.
.
+
n
a
n
x
n
−
1
+
.
.
.
{\displaystyle f'(x)=a_{1}+2a_{2}x+3a_{3}x^{2}+...+na_{n}x^{n-1}+...}
, ievietojot
x
=
0
{\displaystyle x=0}
iegūst
f
′
(
0
)
=
a
1
{\displaystyle f'(0)=a_{1}}
Šo procesu turpinot iegūst citas atvasinājumu vērtības:
f
″
(
0
)
=
2
a
2
{\displaystyle f''(0)=2a_{2}}
,
f
‴
(
0
)
=
3
⋅
2
⋅
a
3
{\displaystyle f'''(0)=3\cdot 2\cdot a_{3}}
,
f
(
4
)
(
0
)
=
4
⋅
3
⋅
2
⋅
a
4
{\displaystyle f^{(4)}(0)=4\cdot 3\cdot 2\cdot a_{4}}
,
f
(
n
)
(
0
)
=
n
⋅
(
n
−
1
)
⋅
.
.
.
⋅
2
⋅
1
⋅
a
n
{\displaystyle f^{(n)}(0)=n\cdot (n-1)\cdot ...\cdot 2\cdot 1\cdot a_{n}}
, līdz ar to
a
n
=
f
(
n
)
(
0
)
n
!
(
n
=
0
,
1
,
2
,
.
.
.
)
{\displaystyle a_{n}={\frac {f^{(n)}(0)}{n!}}(n=0,1,2,...)}
.[ 1]
Šo izvirzījumu rindā sauc par Teilora rindu ap punktu
x
=
0
{\displaystyle x=0}
, ir iespējams izvirzīt rindu ap citiem punktiem, bet šis pierādījums to neapskata.
Eksponentfunkcija :
e
x
=
∑
n
=
0
∞
x
n
n
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
visiem
x
{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots \quad {\text{ visiem }}x\!}
Naturāllogaritms :
ln
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
, kur
|
x
|
<
1
{\displaystyle \ln(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}\quad {\text{, kur }}|x|<1}
ln
(
1
+
x
)
=
∑
n
=
1
∞
(
−
1
)
n
+
1
x
n
n
, kur
|
x
|
<
1
{\displaystyle \ln(1+x)=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {x^{n}}{n}}\quad {\text{, kur }}|x|<1}
Ģeometriskā rinda:
1
1
−
x
=
∑
n
=
0
∞
x
n
, kur
|
x
|
<
1
{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}\quad {\text{, kur }}|x|<1\!}
Binomiālā rinda:
(
1
+
x
)
α
=
∑
n
=
0
∞
(
α
n
)
x
n
visiem
|
x
|
<
1
un kompleksajiem
α
{\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\infty }{\alpha \choose n}x^{n}\quad {\text{ visiem }}|x|<1{\text{ un kompleksajiem }}\alpha \!}
ar vispārinātiem binomiālkoeficientiem
(
α
n
)
=
∏
k
=
1
n
α
−
k
+
1
k
=
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
{\displaystyle {\alpha \choose n}=\prod _{k=1}^{n}{\frac {\alpha -k+1}{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}}
Trigonometriskās funkcijas :
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
visiem
x
{\displaystyle \sin x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots \quad {\text{ visiem }}x\!}
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
=
1
−
x
2
2
!
+
x
4
4
!
−
⋯
visiem
x
{\displaystyle \cos x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots \quad {\text{ visiem }}x\!}
tan
x
=
∑
n
=
1
∞
B
2
n
(
−
4
)
n
(
1
−
4
n
)
(
2
n
)
!
x
2
n
−
1
=
x
+
x
3
3
+
2
x
5
15
+
⋯
, kur
|
x
|
<
π
2
{\displaystyle \tan x=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}}x^{2n-1}=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots \quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
sec
x
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
(
2
n
)
!
x
2
n
, kur
|
x
|
<
π
2
{\displaystyle \sec x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}\quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
arcsin
x
=
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \arcsin x=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
arccos
x
=
π
2
−
arcsin
x
=
π
2
−
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \arccos x={\pi \over 2}-\arcsin x={\pi \over 2}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
arctan
x
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
x
2
n
+
1
, kur
|
x
|
≤
1
,
x
≠
±
i
{\displaystyle \arctan x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1,x\not =\pm i\!}
Hiperboliskās funkcijas :
sinh
x
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
=
x
+
x
3
3
!
+
x
5
5
!
+
⋯
visiem
x
{\displaystyle \sinh x=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+\cdots \quad {\text{ visiem }}x\!}
cosh
x
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
=
1
+
x
2
2
!
+
x
4
4
!
+
⋯
visiem
x
{\displaystyle \cosh x=\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+\cdots \quad {\text{ visiem }}x\!}
tanh
x
=
∑
n
=
1
∞
B
2
n
4
n
(
4
n
−
1
)
(
2
n
)
!
x
2
n
−
1
=
x
−
1
3
x
3
+
2
15
x
5
−
17
315
x
7
+
⋯
, kur
|
x
|
<
π
2
{\displaystyle \tanh x=\sum _{n=1}^{\infty }{\frac {B_{2n}4^{n}(4^{n}-1)}{(2n)!}}x^{2n-1}=x-{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}-{\frac {17}{315}}x^{7}+\cdots \quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
a
r
c
s
i
n
h
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \mathrm {arcsinh} (x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
a
r
c
t
a
n
h
(
x
)
=
∑
n
=
0
∞
x
2
n
+
1
2
n
+
1
, kur
|
x
|
≤
1
,
x
≠
±
1
{\displaystyle \mathrm {arctanh} (x)=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{2n+1}}\quad {\text{, kur }}|x|\leq 1,x\not =\pm 1\!}